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Motivation: Probabilistic matrix factorizations are a powerful tool for modelling matrix X.

» They are robust to overfitting.
» They can account for different data types (continuous, ordinal, count, etc...).
» Fast approximate inference is easily implemented using variational Bayes.

» They scale with the number of entries observed in X, which is usually low, and not with
the size of X which can be very large.

Problem: Many real-world binary matrices are fully observed. Probabilistic approaches
are infeasible in this case because they are based on batch variational algorithms that
require processing all the entries in X before producing a single parameter update.

Solution: A novel stochastic algorithm for variational inference on big binary matrices:

» We apply the SVI method of Hoffman et al., 2013 to matrix factorization models.

» We subsample matrix entries instead of individual data instances.

» We use non-uniform data subsampling strategies which lead to improved predictions.
» We use minibatches to speed up convergence and adjust the minibatch size on-line.

3. Variational Bayes
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2. A Probabilistic Model for Binary Matrices

We use a logistic likelihood and a global bias parameter
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®. We optimize g by maximizing the Evidence Lower Bound (ELBO) with respect to ®.
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qg(U,V, z) = N(z|z,2).

5. Stochastic Inference

(Jaakkola & Jordan, 1997)

Figure: blue = logistic function,

red = lower bound, tight at x = -
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We add an extra variational parameter &; ; for each matrix entry: =
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The model is now conjugate with Gaussian complete conditionals.

6. Natural Gradients and Minibatches

We use stochastic gradient descent to optimize L£(®) = arg max= L(®P, =).

1 - Sample a matrix entry x; j with probability p(7, f).
2 - Compute a noisy estimate of L(®) which includes only a few of the terms in L(®):
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3 - Optimize &;; and choose the values of the scaling constant ¢; ;.
4 - Update @®;; = {{Uiq, Ui, Vj a5 Vj,a}5_4, {Z, 2} } by taking a small step in the direction
of the gradient of Lgisy-

7. Non-uniform Data Subsampling Strategies

We work with natural parameters: U; g = [Ujq/ Ui a, HEJ]T. Let uj , be the maximizer of
Lnoisy With respect U; 4. The natural gradient with respect to this parameter is

V Lioisy(Ti.g) = Uiy — Uid.
The stochastic update of step size p in the direction of the natural gradient is then
U5 = 005 + PV Laoisy(Uia) = (1 — p)07G + pli} 4.

0 use minibatches of size S, we replace Uy ; with U;%;™ = n(l) zgﬂ u, 1 Where n(l) IS

ne number of entries from the i-th row found in the Iast S subsampled entries and G’ d IS
ne maximizer of Lnsisy When the s-th of those entries in the i-th row is subsampled.
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8. Automatically Adjusting the Minibatch Size Online

Real-world binary matrices are usually very
sparse, with frequencies for ones and zeros
that change considerably across rows and
across columns.

We use different subsampling strategies:

- S-Uniform: p(i, j) = 1/(LM).

- S-Balanced: p(i,j) = 1/(2 Za_ Zb I[Xi; = Xa,b]).
- S-Biased: p(’ I) — l"( — Xi.j) (1 — Xi ) [2 Za— Zb 1|[le = X, ]l"(1 —Xa,b) (1—Xa,b)]—1_
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(0) and r(” are the number of zeros and ones in the i-th row of X and likewise C; ) and

(1) count the number of zeros and ones in the j-th column.

9. Sampling Strategies and Evolution of MiniBatchSize

The minibatch size S is important. Trade off: noise reduction vs. frequency of updates.
We bound the relative error of G;";" with respect to its expectation 077y = E[d;’;"™].
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Solving for S, we obtain that S should be proportional to the noise to signal ratio in uj .
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» Only a single effective parameter 6.
» We estimate E[u; ;] and Var[uy ;] online.
» We re-update S after S samples have been drawn.

10. Results on Synthetic and Real-world Datasets

The strategy S-Biased performs best. The minibatch size S converges very quickly.

sampling strategies on Netflix data evolution of minibatch size
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