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1. Introduction

Motivation: Probabilistic matrix factorizations are a powerful tool for modelling matrix X.

I They are robust to overfitting.
I They can account for different data types (continuous, ordinal, count, etc...).
I Fast approximate inference is easily implemented using variational Bayes.
I They scale with the number of entries observed in X, which is usually low, and not with

the size of X which can be very large.

Problem: Many real-world binary matrices are fully observed. Probabilistic approaches
are infeasible in this case because they are based on batch variational algorithms that
require processing all the entries in X before producing a single parameter update.

Solution: A novel stochastic algorithm for variational inference on big binary matrices:

I We apply the SVI method of Hoffman et al., 2013 to matrix factorization models.
I We subsample matrix entries instead of individual data instances.
I We use non-uniform data subsampling strategies which lead to improved predictions.
I We use minibatches to speed up convergence and adjust the minibatch size on-line.

2. A Probabilistic Model for Binary Matrices

We use a logistic likelihood and a global bias parameter.
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3. Variational Bayes

We approximate the posterior with a tractable q(U,V, z) indexed by variational parameters
Φ. We optimize q by maximizing the Evidence Lower Bound (ELBO) with respect to Φ.

4. Local Variational Approximation

We lower bound each logistic function in the ELBO with a Gaussian: σ(x) ≥ τ (x, ξ).

.

We add an extra variational parameter ξi,j for each matrix entry: Ξ = {{ξi,j}L
i=1}M

j=1 .

The model is now conjugate with Gaussian complete conditionals.

5. Stochastic Inference

We use stochastic gradient descent to optimize L(Φ)
∆
= arg maxΞL(Φ,Ξ).

1 - Sample a matrix entry xi,j with probability p(i, j).
2 - Compute a noisy estimate of L(Φ) which includes only a few of the terms in L(Φ):

Lnoisy(Φ) = ci,j f (xi,j, ξi,j,Φi,j)︸ ︷︷ ︸
likelihood

+
D∑

d=1

g(ūi,d, ũi,d)︸ ︷︷ ︸
prior on ui,d

+
D∑

d=1

g(v̄j,d, ṽj,d)︸ ︷︷ ︸
prior on vj,d

+ g(z̄, z̃)︸ ︷︷ ︸
prior on z

.

3 - Optimize ξi,j and choose the values of the scaling constant ci,j .
4 - Update Φi,j = {{ūi,d, ũi,d, v̄j,d, ṽj,d}D

d=1, {z̄, z̃}} by taking a small step in the direction
of the gradient of Lnoisy.

6. Natural Gradients and Minibatches

We work with natural parameters: ůi,d = [ūi,d/ũi,d, ũ−1
i,d ]T. Let ů?i,d be the maximizer of

Lnoisy with respect ůi,d. The natural gradient with respect to this parameter is

∇̂Lnoisy(ůi,d) = ů?i,d − ůi,d .

The stochastic update of step size ρ in the direction of the natural gradient is then

ůnew
i,d = ůold

i,d + ρ∇̂Lnoisy(ůi,d) = (1− ρ)ůold
i,d + ρů?i,d .

To use minibatches of size S, we replace ů?i,d with ů?,avg
i,d = 1

n(i)

∑n(i)
s=1 ů?,si,d , where n(i) is

the number of entries from the i-th row found in the last S subsampled entries and ů?,si,d is
the maximizer of Lnoisy when the s-th of those entries in the i-th row is subsampled.

7. Non-uniform Data Subsampling Strategies

Real-world binary matrices are usually very
sparse, with frequencies for ones and zeros
that change considerably across rows and
across columns.

We use different subsampling strategies:

- S-Uniform: p(i, j) = 1/(LM).
- S-Balanced: p(i, j) = 1/(2

∑L
a=1

∑M
b=1 I[xi,j = xa,b]).

- S-Biased: p(i, j) = r (1−xi,j)
i c(1−xi,j)

j [2
∑L

a=1
∑M

b=1 I[xi,j = xa,b]r (1−xa,b)
a c(1−xa,b)

b ]−1.

r (0)
i and r (1)

i are the number of zeros and ones in the i-th row of X and likewise c(0)
j and

c(1)
j count the number of zeros and ones in the j-th column.

8. Automatically Adjusting the Minibatch Size Online

The minibatch size S is important. Trade off: noise reduction vs. frequency of updates.
We bound the relative error of ů?,avg

i,d with respect to its expectation ů?,?i,d = E[̊u?,avg
i,d ].

Solving for S, we obtain that S should be proportional to the noise to signal ratio in ů?i,d.

S =
‖Var[̊u?i,d]‖1

θδp(i)‖E[̊u?i,d]‖2
2
.

I Only a single effective parameter θδ.
I We estimate E[̊u?i,d] and Var[̊u?i,d] online.
I We re-update S after S samples have been drawn.

9. Sampling Strategies and Evolution of MiniBatchSize

The strategy S-Biased performs best. The minibatch size S converges very quickly.

10. Results on Synthetic and Real-world Datasets

http://jhml.org/ jmh233@cam.ac.uk


