Stochastic Expectation Propagation

Yingzhen Li¹, José Miguel Hernández-Lobato² and Richard E. Turner¹

¹University of Cambridge, ²Harvard University

{yl494, ret26}@cam.ac.uk, jmh@seas.harvard.edu

From EP to Stochastic EP

Goal: approximate the true posterior \(q(\theta) \approx p(\theta|D) \)

\[
p(\theta|D) \propto p(D|\theta) p(\theta) \approx q(\theta) \propto p(\theta) J_1(\theta) f_1(\theta)
\]

Idealised

\[
p(D|\theta) \propto p(D|x_1, \theta)p(x_1|\theta)p(x_2|\theta) \approx q(\theta) \propto p(\theta)f_1(\theta) f_2(\theta) f_3(\theta)
\]

EP

\[
p(D|\theta) \propto p(\theta) f(\theta/N) \propto p(\theta) \approx p(\theta)
\]

SEP

\[
p(D|\theta) \propto p(\theta) f(\theta/N) \propto p(\theta) \approx p(\theta)
\]

Related Algorithms

A) Relationships between algorithms

- **VMP**
- **SVMP**
- **AVMP**

B) Fixed points properties

- **SEP**
- **DSEP**
- **AEP**

Bayesian Neural Network

- **Prior:** \(p_0(\lambda) = \text{Gam}(\alpha \lambda, \beta \lambda) \)
- **Likelihood:** \(p(y|x, \mathbf{w}_k) = \mathcal{N}(y, f(x, \mathbf{w}_k), \gamma_k) \)
- **Inference:** PBP* works better when under-estimating uncertainty.

Bayesian Probit Classification

More Examples

1. Clustering with MoGs
2. Odd-vs-even digit classification

Conclusions

- We scaled EP to large datasets with nearly identical performances
- We extended stochastic EP and related it to variational Bayes
- SEP is well suited to “big model, big data” settings

An Alternative View of SEP

Equivalent factorisation: \(p(x|\theta) = (\prod_x p(x_n|\theta_n))^{1/N} \)

EP on the equivalent factorisation will converge to \(f(x|\theta) = f(\theta) \) that captures the average affect of likelihood terms on posterior!

EP

\[
p(D|\theta) \propto p(\theta) f(\theta) f(\theta/N) \propto p(\theta) \approx p(\theta)
\]

SEP

\[
p(D|\theta) \propto p(\theta) f(\theta) f(\theta/N) \propto p(\theta) \approx p(\theta)
\]

Work in progress: guarantees lower bound analysis of approximation error

Bayesian Neural Network

- **Prior:** \(p_0(\lambda) = \text{Gam}(\alpha \lambda, \beta \lambda) \)
- **Likelihood:** \(p(y|x, \mathbf{w}_k) = \mathcal{N}(y, f(x, \mathbf{w}_k), \gamma_k) \)
- **Inference:** PBP* works better when under-estimating uncertainty.

Bayesian Probit Classification

- **1. Clustering with MoGs**
- **2. Odd-vs-even digit classification**

Conclusions

- We scaled EP to large datasets with nearly identical performances
- We extended stochastic EP and related it to variational Bayes
- SEP is well suited to “big model, big data” settings